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Abstract—As a cost-effective paradigm, Sparse Crowdsensing
aims to recruit workers to perform a part of sensing tasks
and infer the rest, which has broad applications, including
environmental monitoring, urban sensing, etc. In most cases,
workers will participate in real time, and thus their sensing
data are coming dynamically. Taking full advantage of the online
coming data to complete the full sensing map is an important
problem for Sparse Crowdsensing. However, for data completion,
the importance of data collected from different spatio-temporal
areas is usually different and time-varying. For example, the
newly obtained data in the center is often more important than
the old ones from edges. Moreover, the area importance may also
influence the following worker selection, i.e., selecting suitable
workers to actively sense important areas (instead of passively
waiting for given data) for improving completion accuracy. To
this end, in this paper, we propose a framework for online Sparse
Crowdsensing, called OS-MCS, which consists of three parts:
matrix completion, importance estimation, and worker selection.
We start from the dynamically coming data and propose an online
matrix completion algorithm with spatio-temporal constraints.
Based on that, we estimate the spatio-temporal area importance
by conducting a reinforcement learning-based up-to-date model.
Finally, we utilize the prophet secretary problem to select suitable
workers to sense important areas for accurate completion in an
online manner. Extensive experiments on real-world data sets
show the effectiveness of our proposals.

Index Terms—Online Sparse Crowdsensing, Matrix Comple-
tion, Worker Selection.

I. INTRODUCTION

With the explosive growth of portable devices, Mobile

CrowdSensing (MCS) [1] becomes a promising paradigm that

recruits crowd workers to perform a wide variety of sensing

tasks at the target time and locations [2]. However, in some

large-scale tasks [3], e.g., environmental monitoring, urban

sensing, spatial crowdsourcing, the large number of sensing

areas and long-term continuous sensing requirements make

the traditional MCS consume a lot to cover the full map at

all times. To this end, a modified cost-effective paradigm has

been proposed to recruit workers to perform only a part of

sensing tasks and infer the rest by exploiting the inherent data

correlations, called Sparse Crowdsensing [4].

Recently, with the low cost and high accuracy, Sparse

Crowdsensing has drawn increasing attention, while most of

the existing works are conducted offline [5]–[12]. As shown
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Fig. 1: Example of Offline/Online Sparse Crowdsensing.

in Fig. 1 (upper part), the offline scheme first recruits workers

from a known pool to perform a few sensing tasks, and then

infer the rest after receiving all the data. However, in most

cases, workers will participate in real time, and thus the
sensing data provided by them are coming dynamically. For

such online scenarios, we not only have to decide whether

to select one worker in an online manner, but also need to

make full use of the dynamically coming data. Intuitively, we

can simply and directly complete the full sensing map after

receiving each new piece of data. Obviously, it costs a lot and

may cause high completion latency due to heavy computation

load. Another alternative is to group data into batches and infer

only once after receiving the data of each batch. However, this

method could not take full advantage of the online coming data

because there is a lag between receiving data and exploiting

data. Hence, how to effectively exploit the dynamically coming

data for online data completion is the first challenge.

Note that the importance of data collected from each sensing

area is usually different and time-varying, which can be

utilized to improve the data completion. As shown in Fig.

1 (lower part), the blue worker can collect data from a center

area, which is usually more important than the corner data col-

lected by the black worker. Similarly, the newly obtained data

is obviously more useful to do data completion compared with

the old one collected from the same area. Thus, to improve the

data completion under ever-changing online scenarios, area
importance estimation becomes the second challenge.
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Fig. 2: Workflow of OS-MCS.

Moreover, instead of passively waiting for given data, we

prefer to select suitable workers to actively sense important

areas for accurate data completion by utilizing area importance

estimation. However, in online scenarios, the workers and

their provided data are invisible and hard to predict until they

participate in Sparse Crowdsensing. Hence, how to select the
worker set in an online manner to sense important areas for

accurate data completion is the third challenge.

To tackle these challenges, in this paper, we propose an

efficient framework for online Sparse Crowdsensing, called

OS-MCS, which consists of three parts: data completion,

importance estimation, and worker selection. As shown in Fig.

2, for each coming worker, we first decide whether to select it

or not according to the model of importance estimation; if the

worker is selected, we then use its collected data to complete

the full sensing map; the online data and the completed full

map will also be sent to keep the estimation model up-to-

date. Thus, data completion, importance estimation and worker

selection form a complex circular triangle relationship. For

data completion, we conduct statistical data analysis on real-

world data sets. In fact, there are many correlations in sensing

data, e.g., the temporal and spatial continuity, periodicity, and

similarity. Combining a low-rank representation model, we

propose an online matrix completion algorithm with spatio-

temporal constraints in order to complete the full map in an

online manner. Based on that, for importance estimation, we

conduct a reinforcement learning-based method to evaluate

that when and where to collect data may help more on

complicated data completion. Note that we not only use the

model learned by reinforcement learning from the collected

data, but also conduct an up-to-date training data set to deal

with the ever-changing online scenarios. For worker selection,

we utilize the data importance estimation to connect the

worker selection with data completion, i.e., to select workers

to actively collect important data for accurate completion. We

formulate the worker selection as the classic secretary problem

and introduce the prophet inequality to select the best workers

according to a changing threshold from the historical records.

In summary, this paper makes the following contributions:

• Online Sparse Crowdsensing: We investigate the Sparse

Crowdsensing under online scenarios. We select workers

to perform a part of sensing tasks while inferring the rest

in a more practical online manner, by dealing with the

workers participating in real time and the dynamically

coming data they provide.

• Framework OS-MCS: We propose an efficient frame-

work for online Sparse Crowdsensing, called OS-MCS.

We first propose an online matrix completion algorithm

under spatio-temporal constraints. Based on that, we

conduct a reinforcement learning-based importance es-

timation with an up-to-date model. Finally, a prophet

secretary-based online worker selection strategy is pre-

sented, aiming to select workers to actively sense impor-

tant areas for data completion in an online manner.

• Extensive Evaluation: We conduct extensive evaluations

on five typical sensing tasks with real-world data sets,

which verify the effectiveness of our proposed methods

for online Sparse Crowdsensing.

II. RELATED WORK

Mobile CrowdSensing is a promising paradigm that utilizes

crowd of workers to perform various sensing tasks [1]. To

achieve accurate and complete sensing results, traditional MCS

works have to recruit a large number of workers to cover all

tasks [2], which obviously consumes a lot and still cannot

deal with the tasks with no available workers. To this end, a

modified cost-effective paradigm, called Sparse Crowdsensing

[4], is proposed that only needs to perform a part of sensing

tasks while inferring the rest. However, most of the existing

Sparse Crowdsensing works are conducted offline [5]–[12],

which ignore the more practical online scenarios that the

workers usually participate in real time, and thus the sensing

data provided by them are coming dynamically.

In Sparse Crowdsensing, researchers mainly focus on data

completion. Recently, with the rapid development of sparse

representation and other technologies, compressive sensing

[5]–[9] and matrix completion [10]–[12] have gradually be-

come the de facto choices in Sparse Crowdsensing. However,

these existing works have not completely explored the spatio-

temporal correlations in the sensing data. There are also some

works on cell selection [13]–[17], which mainly measure the

uncertainty of subarea by entropy or reinforcement learning-

based methods, but not when and where to collect data. For

worker selection, which is actually the foundation of Sparse

Crowdsensing, there only exists few works that use the cost

order [6], [7], [10] or try to estimate the data inference

accuracy [8] to select workers. However, all of these above

works cannot be directly used in such online scenarios. In this

paper, we aim to conduct an efficient framework for online

Sparse Crowdsensing, which conducts online data completion,

keeps importance estimation up-to-date, and selects workers in

a totally online manner, aiming to recruit suitable workers to

actively sense important areas for data completion.

III. MODEL, PROBLEM, AND FRAMEWORK OVERVIEW

A. System Model

We first introduce the system model of our online Sparse

Crowdsensing, whose main notations are listed in Table I.

Tasks. We consider a general MCS scenario, where m target

sensing areas should be sensed with a duration T . Considering

the continuity and stability in sensing data (will be illustrated

in Section V), we can split the duration T into n cycles. We

assume that the cycles are short enough that the sensing data

in each cycle will not change much. In this way, the MCS



TABLE I: Main notations

Notation Meaning
m, n Number of sensing areas and cycles.
T , t Duration and current time.
Y , Y ′, M Full matrix, sensed matrix, and mask matrix.

Ŷ , ε Completed matrix and completion error.
w, k Number of total workers and selected workers.
W , μ Worker set and selected worker set.
B, c Budget and cost.
U , V , r Latent spatio-temporal matrices and rank.
S, A, R State, action, and reward.

campaign actually can be seen as a combination of m × n
sensing tasks, each of which should be performed at a specific

location and time.

Data. Let Ym×n be the full sensing matrix with m sensing

areas and n cycles, where each Y [i, j] = yi,j denotes the

true value in the i-th sensing area at the j-th cycle. In

Sparse Crowdsensing, we only need to perform a part of tasks

while inferring the rest. We record the actually sensed matrix

Y ′ = Y ⊗M , where ⊗ denotes an element-wise product and

M [i, j] = {1, 0} records whether the task is completed or not.

Under online scenarios, Y ′ and M will change along with time

t, and thus can be denoted as Y ′
t and Mt, where we consider

a discrete time model, i.e., t = {1, 2, . . . , T}, for simplicity.

Importance. We use the data completion method f(·) to

complete a full map Ŷ from the actually sensed matrix Y ′,
aiming to achieve an approximation of Y , i.e., f(Y ′) = Ŷ ≈
Y . The error of online data completion at time t is denoted

as ε(Y, Ŷt) =
∑m

i=1 |Y [i, t] − Ŷ [i, t]|, which is actually the

completion accuracy of the current sensing cycle and thus

reflects the importance of the current sensed Y ′
t .

Workers. Let W = {u1, u2, . . . , uw} be the worker set

with a total of w workers, each with a cost ci. In the online

scenarios, a worker ui will participate in MCS campaign at

time ti with location li, and we should immediately decide

whether to select her to perform the task with it location

and time1, according to the estimated importance and the

remaining budget B. The selected worker set is denoted as

μ with cardinality k, and thus we have
∑k

i=1 ci ≤ B.

B. Problem Formulation

Problem [Worker Selection Towards Data Completion for

Online Sparse Crowdsensing]: Given a set of tasks with m
sensing areas and n cycles, with a budget B and a duration
T , our problem is to select a set of sequential participating
workers μ, with the objective of minimizing the total comple-
tion error during the whole online processing:

minimize
∑T

t=1
ε(Y, Ŷt) (1)

subject to Ŷt = f(Y ′
t ), μ ⊆ W,

∑
ui∈μ

ci ≤ B (2)

1To simplify the problem, we assume that each selected worker will
immediately and successfully perform the task at its time and location
(matches the sensing cycle and area). The more complicated situations can
be easily modified in our worker selection method.
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Fig. 3: Overview of OS-MCS.

Lemma 1. The online worker selection problem is NP-hard.

Proof: Without loss of generality, we ignore the com-

plicated data completion but consider that adding a new

worker/data will reduce the error. Then, we can change the

monotonous objective function from minimizing error to max-

imizing negative error. Further consider that the workers have

the same cost c, and thus we can select at most k = �B/c�
workers. Then, the online worker selection problem is reduced

to the subset selection problem, i.e., selecting k-element subset

to maximize a set function, which is a classic NP-hard problem

[18]. Thus, the simplified case is NP-hard. Consequently,

further considering the complicated data completion and ever-

changing online scenario, our online worker selection problem

is NP-hard.

C. Framework Overview

To solve this problem, in this paper, we propose a frame-

work for online Sparse Crowdsensing, called OS-MCS, which

consists of three parts: data completion, importance estimation,

and worker selection, as illustrated in Fig. 3.

• Worker Selection: for each coming worker, we first

use the worker selection component to decide whether

to select it or not. We first conduct a fresh-looking

sampling from the historical records and the workers

coming ahead. Then, we calculate a threshold according

to the samples’ (workers’) spatio-temporal areas by im-

portance estimation. Finally, we select suitable workers

by a prophet-secretary-based strategy, aiming to actively

sense important areas for data completion.

• Data Completion: if the coming worker is selected, we

then use its newly provided data, combining the previous

collected ones, to complete the full map in the data com-

pletion component. To make full use of the dynamically

coming data, we propose a matrix completion algorithm

with spatio-temporal constraints and online updates.

• Importance Estimation: we present the importance esti-

mation component to measure when and where to collect

data are more helpful, in order to improve the data

completion accuracy and guide the active worker selec-

tion. Specifically, based on the completion algorithm, we

utilize a reinforcement learning-based method to train

a model to estimate the importance of spatio-temporal
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areas. Furthermore, we also use the online coming data

to keep the trained model up-to-date.

In the following, we first introduce the foundation online

data completion in Section IV; based on that, we present the

up-to-date importance estimation in Section V; finally, we

propose the more active online worker selection (instead of

passively waiting for given data) in Section VI.

IV. ONLINE DATA COMPLETION

We first study the basic data completion component, where

spatio-temporal constraints and online updates are added, to

complete the full matrix from a part of online coming data.

A. Matrix Completion

In the physical world, the sensing data naturally exist with

some correlations, which leads that the full data matrix can be

approximated to a low-rank matrix [4]. Given the incomplete

sensing matrix Y ′, we can complete the full matrix Ŷ by

utilizing the low-rank property:

min rank(Ŷ ), s.t., Ŷ ⊗M = Y ′. (3)

Since the above optimization is nonconvex and thus hard to

be solved, as shown in Fig. 4 (red lines), we then factor

the low-rank matrix Ŷ into the product of two tall matrices,

i.e., Ŷm×n = Um×rV
T
n×r, where U and V can be seen as

the latent spatio-temporal feature matrices and r is the latent

rank that r ≤ min{m,n}. Note that minimizing the rank of

Ŷ is equivalent to minimizing ‖U‖2F + ‖V ‖2F under certain

conditions [19], we then revise Eq. 3 as:

min ‖(Y ′ − UV T )⊗M‖2F + λ(‖U‖2F + ‖V ‖2F ), (4)

where ‖(Y ′ − UV T )⊗M‖2F represents the completion error

based on the Frobenius norm ‖ · ‖F and λ makes a trade-off

between rank minimization and accuracy fitness.

B. Spatio-Temporal Constraints

The optimization problem in Eq. 4 is the basic model for

matrix completion, which only relies on the global low-rank

property. Since the sensing data usually exhibit strong spatial

and temporal correlations, we would like to exploit them to

further improve the completion accuracy.

As shown in Figs. 5 (a-c), we conduct a simple statistical

data analysis on Traffic2, which reflects some common and

effective spatio-temporal correlations, i.e., the continuity, pe-

riodicity, and similarity. Typically, such correlations can be

2Traffic is a real sensing application that records the real-time traffic volume
in different subway stations, which will be described in detail in Section VII.

(a) Continuity (b) Periodicity (c) Similarity

Fig. 5: Statistical Data Analysis on Traffic.

formulated as the spatio-temporal constraints and added into

Eq. 4, as follows:

min‖(Y ′−UVT)⊗M‖2F +λ(‖U‖2F +‖V ‖2F)+g(T)+h(S), (5)

where g(T) and h(S) are spatio-temporal constraint functions.

For temporal correlations, we first consider the temporal

continuity. Let yT be the column vector of the matrix Y , i.e.,

Y = [yT
1 ,y

T
2 , . . . ,y

T
n ]. As shown in Fig. 5 (a), we observe

that the values of sensing data only change in a small range

between adjacent times, thus we have

min
∑n

i=2
‖yi − yi−1‖2. (6)

Let vi be the column vector of the tall matrix V , we have

‖yi − yi−1‖2 = ‖(UvT
i )

T − (UvT
i−1)

T ‖2
≤ ‖U‖2‖vi − vi−1‖2 ≤ ‖U‖2‖vi − vi−1‖1, (7)

where �1 norm is more robust on noise [20]. Then, we can

use a matrix Tc =Toeplitz(0, 1,−1) to obtain the temporal

constraint function, as follows:

g(T) = ‖V T
Tc‖1, (8)

where

Tc =

⎡
⎢⎢⎢⎣
−1 0 · · · 0
1 −1 · · · 0
... · · · · · · ...

0 · · · · · · 1

⎤
⎥⎥⎥⎦
n×(n−1).

(9)

This matrix intuitively constraints that values from same

location at two continuous cycles are usually similar.

As shown in Fig. 5 (b), except for continuity, the sensing

values also exist strong periodicity from hour to hour, day

to day, etc, which can be learned by the classic time-series

analysis in statistics [21]. Thus, we further utilize it to modify

the temporal constraint matrix T, by moving 1 to the interval

line, i.e., Tp[i, :] = [. . . ,−1, . . . , 1, . . .]T , ∀1 ≤ i ≤ n. Also,

1 and −1 can be changed to the similar ratios to reflect the

trend. Then, we revise the temporal constraint matrix as T =
(1− λp)Tc + λpTp and reformulate the Eq. 5, as follows:

min ‖(Y ′ − UV T )⊗M‖2F + λ(‖U‖2F + ‖V ‖2F )
+λt‖V T

T‖1 + h(S), (10)

where λp is used to balance the continuity and periodicity, and

λt is the temporal weight. Actually, Tc maintains the stability

and Tp reflects the characteristics of the sensing data.

For spatial correlations, similar with the temporal ones, we

mainly consider the spatial continuity and similarity. In most

cases, the closer locations usually have the similar values of

sensing data. As shown in Fig. 5 (c), we use the Pearson



Correlation Coefficient to calculate the similarity between

locations. We can find that not only the nearby locations, but

also some far away locations have similar surroundings, or

other similar conditions have similar sensing values. Thus,

inspired by the temporal constraint matrix T, we first use the

Euclidean distance to model the spatial continuity constraint

matrix Sc for m×m pairs of locations, as follows:

Sc[i, j] =

{
di,j/

∑
t �=i di,t, i 
= j

−1 i = j
(11)

where we set di,j = e−dis(loci,locj)/σ
2
c and dis(loci, locj) =√

(loci.x−locj .x)2+(loci.y−locj .y)2.

Note that not only the adjacent locations, but also some

relatively distant locations may have similar sensing values.

As shown in Fig. 5 (c), Loc. 1 is far away from Loc. 3, but

they still have similar trend and values. The reason is that both

Locs. 1 and 3 are teaching buildings, i.e., they share the same

physical attributes characteristics. Similar, other factors, such

as the similar surroundings, PoIs, topography, etc, may also

lead to similar values. In addition to prior expert knowledge,

we can also learn such spatial correlations from the values.

We conduct the similarity constraint matrix Ss as:

Ss[i, j] = si,j/
∑

t �=i
si,t, i 
= j, (12)

where si,j = e−|yi−yj |/σ2
s and Ss[i, i] = −1, i = 1, . . . ,m.

Then, doing the same with the temporal constraint function,

we revise the spatial constraint matrix as S = (1−λq)Sc+λqSs

and reformulate the Eq. 10, as follows:

min ‖(Y ′ − UV T )⊗M‖2F + λ(‖U‖2F + ‖V ‖2F )
+λt‖V T

T‖1 + λs‖SU‖1, (13)

where λq and λs are nonnegative weights to balance the

corresponding terms. Similarly, Sc holds the stability and Ss

portrays the characteristics. In this way, we directly impose the

spatio-temporal constraints on latent feature matrices, which

further guide the direction to help data completion.

C. Online Updates

In order to deal with the problem in Eq. 13 under online

scenarios for practical applications, several heuristics have

been proposed, which first approximately complete the full

matrix and conduct a fast update for each new coming data.

One of those is Stochastic Gradient Descent (SGD) [22],

which is a well known fast algorithm that updates the spatio-

temporal matrices towards the new data. However, to achieve

a good performance, SGD requires a tedious adjustment and

fine tuning of the stepsize [23]. Thus, we utilize a modified

Alternating Least Squares (ALS), which updates the spatio-

temporal matrices U and V iteratively according to Eq. 13, in

order to obtain the completed full matrix by Ŷ = UV T .

ALS is a two-step iterative method, which first fixes U to

calculate V and then turns around iteratively. Suppose that

the spatio-temporal matrices U ′ and V ′ have already been

estimated based on the current Y ′ after many iterations. When

a new data yi,j is coming, it is quite intuitive that the new

estimated U and V are close to the previous U ′ and V ′.

Algorithm 1 Matrix Completion with Online Updates

Input: collected data: M , Y ′; new data: yi,j ; previous latent

spatio-temporal matrices: U , V

1: fix ui, calculate vj according to yi,j = uiv
T
j ;

2: while not convergent do
3: fix v, calculate ui according to Eq. 13;

4: fix u, calculate vj according to Eq. 13;

Actually, as shown in Fig. 4 (black line), only the rows ui and

vj in U ′ and V ′ will be impacted by the new data yi,j . Thus,

the online updates should be conducted on such two rows of

two tall matrices. Note that such efficient online updates are

very popular and well applied in the recommender systems

domain. Thus, for the online Sparse Crowdsensing, the matrix

completion algorithm with online updates is summarized in

Algorithm 1. We first fix the relatively stable spatial vector ui

and use the new data yi,j to calculate the temporal vector vj

(line 1). Then, we update these two vectors iteratively until

convergent (lines 3-4). In addition, since the latent rank r is

unknown, we also should conduct a grid search to balance the

accuracy and efficiency in practice.

V. IMPORTANCE ESTIMATION

Based on the above online data completion, we further study

the importance estimation to measure when and where to

collect data can help more on data completion, which will

further be used to guide the worker selection in Section VI.

A. Reinforcement Learning-based Estimation

Considering the spatio-temporal correlations, the data col-

lected from important spatio-temporal areas may play a signif-

icant role in improving the completion accuracy. For example,

when we have collected data from the same area for many

cycles, the data far away from this area can often provide

more information for data completion. However, due to the

complicated data completion method and ever-changing online

scenarios, we can hardly identify when and where to collect

data can help more on data completion.

To tackle that, we propose to use Reinforcement Learning

(RL) to connect the spatio-temporal area with completion

accuracy directly, in order to estimate its importance for

completion. RL can be abstracted as ‘an agent decides the

next action under a certain state to maximize the total re-

ward’, which is correspondingly interpreted as ‘the Sparse
Crowdsensing decides the next spatio-temporal area under the

already collected data to maximize the completion accuracy’.

Note that our proposed RL-based method is not used to

select the next sensing area and cycle, we mainly use the

model learned by RL to estimate the importance, i.e., the

expected completion accuracy, of each spatio-temporal area,

which is used to guide us to select suitable workers to actively

sense importance spatio-temporal areas for data completion.

As shown in Fig. 6, we formally model the three key concepts.

State (denoted as S) represents the data collection. We

consider the mask matrix M as the state that records when
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and where we have collected data, i.e., M [i, j] = {1, 0} means

that yi,j has been collected or not. Note that we don’t add

the collected data yi,j and other possible factors in state. On

the one hand, it avoids dimension explosion; on the other,

we focus on the inherent spatio-temporal correlations in the

sensing data, and other factors can be easily modified.

Action (denoted as A) represents the possible spatio-

temporal sensing area. Considering the online scenarios, we

cannot collect data from the previous cycles and thus we

use the current sensing areas as the actions, denoted as

A = {a1, a2, . . . , am}. Note that if we further consider that

workers can collect data at future several cycles, the actions

can be set as the area-cycle pairs.

Reward (denoted as R) represents the completion accuracy

of each action under a certain state. We directly use the

completion error to formulate the reward, as follows:

R = e−ε(Y,Ŷt)/σ
2
e = e−

∑m
i=1 |Y [i,t]−Ŷ [i,t]|/σ2

e . (14)

Note that we don’t add some penalty terms since the reward

is not used to guide selection but to estimate completion

accuracy, and such estimations are not the accurate values of

errors but only used to compare them. We also use the total

error but not the average one to increase the range.

With the above state, action, and reward, we then propose

our RL-base importance estimation method. Specifically, un-

der a certain state, we need to learn a Q-function that can

output a reward for each possible action. In general, Q-function

can be formulated as a Q-table or neural networks, known

as the famous Q-Learning (QL) [24] and Deep Q-Network

(DQN) [25], [26], which records the mappings between the

spatio-temporal sensing areas to the completion accuracy in

our problem. Next we formally introduce them respectively:

Q-Learning is a traditional RL method that records the

rewards in Q-table Q[s, a] for each action a ∈ A under a

state s ∈ S. Further consider that the spatio-temporal areas

not only determine the current data completion accuracy, but

also impact the future ones. Thus, we should iteratively add

the future reward to update the Q-table Q[s, a], as follows:

Q[s, a] = (1− α)Q[s, a] + α
(
R+ γmaxa′ Q[s′, a′]

)
, (15)

where s′ and a′ are the next state and action, α is the learning

rate, and γ indicates the discount factor of future rewards. With

the trained Q-table, we can search it to obtain the importance

Algorithm 2 Up-to-date Training

Input: model: Qθ; training data: Ỹm×k; new data: y

1: Update Ỹm×k according to the new data y;

2: while not convergent do
3: Randomly select s ∈ S and a ∈ A, obtain s′;
4: Get Qθ(s, a), a

′, and Qθ(s
′, a′) according to Qθ;

5: Obtain R according to Eq. 14 and Alg. 1;

6: Update Qθ according to Eqs. 16 and 17.
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Fig. 7: Example of updating the training data.

of actions under a certain state, i.e., when and where to collect

data may help more on completion. However, in practice, the

spaces of states and actions are usually very large that the

storage and search costs a lot.

Deep Q-Network is an emerging RL method in recent

years, which utilizes the neural networks to replace the Q-

table by learning a model to estimate the rewards for actions

under a state, as follows:

Q(s, a) = E
[
R+ γmaxa′ Q(s′, a′)

]
. (16)

We use the stochastic gradient algorithm to learn the model θ
and thus obtain the loss function:

L(θt) = E[
(
R+ γmaxa′ Qθ(s

′, a′)−Qθ(s, a)
)2
]. (17)

In this way, DQN actually uses the model θ to approximately

achieve Qθ(s, a) ≈ Q[s, a] in QL, which is exactly the

estimated importance.

B. Up-to-date Training

By utilizing the above QL and DQN, we can use the training

data and our proposed data matrix completion method to

calculate the reward and then learn the importance estimation

model. However, the sensing data may change a lot over

time, which are impacted by many factors, e.g., weather,

seasons, holidays, and even some emergencies. Obviously,

as shown in the lower part of Fig. 6, such changing data

distributions make the importance estimation model not always

work well. Therefore, we should keep the model up-to-date

through updating the training data, as summarized in Alg. 2.

Specifically, for each coming data, we update our training

data from both spatial and temporal aspects. The basic idea

is to utilize the continuity of spatio-temporal data shown in

Figs. 5 of Section IV.B, i.e., the gradual changes in adjacent

cycles and areas. We provide a toy example in Fig. 7. For the

temporal aspect, we calculate the average values of the training

data in the last cycle avgt = avg(y−2) = 7 and the collected

data in the current cycle avgy = avg(ŷ−1 ⊗ M [:,−1]) = 6.

Then, we use a classic Zoom method used in process images

and information spaces [27], [28], which can hold the data



Algorithm 3 Fresh-looking Sampling

Input: selected workers: μ; new workers: ui, ci; number of

workers: j; time: T ; budget: B; historical workers: F

1: Conduct X = {f(μ, x1), f(μ, x2), ..., f(μ, xj−1)} from

F according to t and T ;

2: while i ≤ j and ci ≤ B do
3: if f(μ, ui) ≥ max{X} then Return μ ∪ {ui}
4: else
5: X ∪ {f(μ, ui)}
6: Randomly select z from X , and X = X \ {z}
7: Wait for the next worker ui++

distribution but not the values for updating the training data:

yt = y−2 ⊗
(avgy
avgt

× (1−M [:,−1]T )
)
+ ŷ−1. (18)

Similarly, for the spatial aspect, we mainly consider the ratios

of the current data and previous data from the same sensing

area to update the training data by Zoom, as follows:

ys=
−−→avgs ⊗

(
y−1./

−−→avgs × (1−M [:,−1]T )
)
+ŷ−1, (19)

where −−→avgs = {avg1, avg2, . . . , avgm} records the average

values of the training data from each sensing area. Then, by

combining the Eqs. 18 and 19, we obtain the update values as

y−1 = λtyt + λsys, where λt + λs = 1 and they represent

the spatio-temporal weights respectively. In addition, we only

keep k cycles as training data, i.e., Ỹm×k, in order to utilize

the gradual changes. Also, for a new cycle, we drop the oldest

and add the new one to Ỹ .

VI. ONLINE WORKER SELECTION

With the importance estimation model, we finally study the

worker selection to select suitable workers to actively sense

important spatio-temporal areas for accurate data completion.

A. Secretary Problem-based Worker Selection

In the online scenarios, the workers participate in real time

and we should immediately decide whether to select it or

not according to the importance of its covered sensing areas,

without knowing the future information. If we can only select

one worker, the worker selection problem is actually the classic

secretary problem, i.e., select the best one out of w secretaries

that come in sequence. By further considering the cardinality

constraints, i.e., we can select at most k workers, and the

submodular utility function, e.g., considering their overlapping

skills, the classic secretary problem can be extended to the

submodular k-secretaries problem [29], interpreted as ’select

k out of w workers to maximize their group utility online’. The

competitive ratio for this problem is proved as (1− 1/e)/7.

In this paper, further considering the budget constraint and

the worker’s utility on completion accuracy, we formulate

our worker selection problem as a budgeted multi-secretaries

problem towards data completion, i.e., select a worker set μ
under a budget

∑
u∈μ cu ≤ B to collect data from important

spatio-temporal areas, in order to maximize the online data

completion accuracy. Based on the importance estimation

Time

Fresh-looking 
sampling

Online workers

Randomly 
replacement

Threshold

Worker selection

Fig. 8: Example of fresh-looking sampling.

model in Section V, we can estimate a worker u’s utility

according to its sensing area au under the already covered

areas sμ by the selected set μ, as follows:

f(μ, u) = (T − tu) ·Q(sμ, au), (20)

where the worker u will collect data at time tu and its

active time for online data completion is denoted as T − tu.

Since there exists some spatio-temporal areas that are more

important for data completion, the utility function in Eq. 20

is time-varying and generally non-submodular.

To tackle that, we propose a segmented worker selection

strategy. Specifically, we first use the historical records to

roughly estimate the number of selected workers k under the

budget B. In general, the costs are mainly caused by the

sensing devices, which have relatively accurate distributions

for estimating k. Then, we divide w workers into k segments

and try to select the best one from each segment, i.e., observe

the first 1
e · wk workers and select the first one who has a larger

utility than the observed workers. Finally, after selecting one

worker, we re-adjust the segmented strategy, i.e., re-estimate

the number k and then divide and select workers as mentioned

above. Such adjustment is used to correct the inaccurate

k. Note that we won’t select a worker who may reduce

the overall accuracy, the utility function f(·) thus can be

seen as a monotone non-submodular function. By introducing

the submodularity ratio γ of f(·), our proposed segmented

worker selection strategy can be proved to achieve an expected

competitive ratio of γ2(1−e−1)(1−e−γ/2)/7 [30].

B. Fresh-looking Sampling

In the traditional secretary problem, workers are coming

in random order. Thus, we should take an observation, i.e.,

observe and discard the first 1
e · 100% workers, to learn

their utility distribution. This observation is necessary but

still seems a little wasteful. However, in practice, we usually

have some historical records, which can be used to learn such

distributions instead of discarding workers. Thus, in this paper,

we further introduce the prophet problem, i.e., select the best

worker from known distributions, into our budgeted multi-

secretaries problem, which no longer discards workers.

The basic idea of the prophet secretary problem is to

construct a sample worker set to approximate the discarded

workers. Based on the observation that Oε(j) samples can

provide a sufficiently good approximation to the 1/e-quantile

of the distribution of max{f(u1), f(u2), . . . , f(uj)} [31], we

can conduct a j−1 samples for each coming worker to provide

the approximation on the discarded workers [32].



For simplifying and utilizing the online coming workers, we

then introduce the fresh-looking sampling method, as shown in

Alg. 3 and Fig. 8. Specifically, we first conduct a sample set of

size j − 1 from historical records with the same period (line

1). Then, for each coming worker, if we can afford (line2),

we compare its utility with the max one from the sample

set, i.e., the threshold, to decide whether to select it or not

(line 3). Note that if we don’t select the current worker, we

add it to the sample set and randomly delete one for fresh-

looking sampling (lines 5-6). Actually, since we delete the

one with largest utility, the threshold decreases in expectation

over time. In this way, we actually conduct a sample set of

size j − 1 approximated to the discarded workers to estimate

the threshold for each coming worker.

VII. PERFORMANCE EVALUATION

A. Data set

We conduct extensive evaluations on five typical sensing

tasks with real-world data sets, including environmental moni-

toring (PM2.5 [33], Temperature, Humidity [34]) and urban

sensing (Traffic [35], Parking [36]). Specifically, PM2.5 is

collected by 36 air quality monitoring stations from Beijing.

Temperature and Humidity are sensed by 57 static sensors de-

ployed in the EPFL campus. Traffic collects the traffic volumes

of 30 subway stations in New South Wales. Parking contains

the occupancy rates of 73 car parks from Birmingham. The

detailed statistics are shown in Table II.

Note that the above data sets are collected by static sensors

or stations, which can also be obtained by mobile devices.

To evaluate our framework, especially on worker selection,

we also conduct the corresponding worker set based on some

real-world traces collected from city (for PM2.5, Traffic, and

Parking) and campus (for Temperature and Humidity).

B. Comparison Algorithms

Our proposed framework consists of three parts, we conduct

evaluations on them respectively. For data completion, we

propose an online algorithm with spatio-temporal constraints

(ON). We compare it with its offline version (STMC), the

classic matrix completion (MC) [10], and the deep matrix

factorization (DMF) [12]. Similarly, for importance estima-
tion, we compare our proposed up-to-date model (UTD) with

the classic Deep-Q Network (DQN) [13] and the query-by-

committee (QBC) [5]. For worker selection, we compare

the prophet-secretary-based strategy (PRO) with the secretary-

based strategy (DYN) [30], the near-optimal offline strategy

(OFF), the online incentive mechanism (OMZ) [37], and the

basic random method (RAN).

C. Evaluation Results

1) Data completion: We first evaluate the data completion

in terms of the main metric, i.e., the completion error ε,

as shown in Fig. 9 (a)-(e) for five typical sensing tasks

respectively. We randomly select the spatio-temporal areas and

change the sparsity ratio from 0.1 to 0.5. We can see that in

most cases our proposed ON is close to its offline version
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Fig. 12: Spatio-temporal weights and running time.

STMC and better than others, which proves the effectiveness

of our method. However, when the sparsity ratio is low, ON

usually has a poor performance, especially on Temperature

and Humidity tasks. The reason is that ON relies heavily

on the previous matrix completion results, i.e., the last latent

spatio-temporal feature matrices U and V , which are not very

accurate and change greatly when we have only a few sensing

data for completion.

2) Importance estimation: For the importance estimation,

since we can hardly evaluate the estimation model directly, we

use the model to select and sense some spatio-temporal areas

and evaluate their completion (by ON) errors. As shown in Fig.

10 (a)-(e), our UTD is always better than other comparison

methods, which shows that the up-to-date training is effective

and necessary. Since we use ON as the data completion

method, the methods also achieve poor performances on Tem-

perature and Humidity tasks. In addition, when the sparsity

ratio is high, all of the estimation methods can’t help much.

3) Worker selection: We then evaluate the worker selection

towards data completion, as shown in Fig. 11 (a)-(e). We

set the workers’ average cost as 20 with a budget constraint

B = 300. To effectively evaluate our PRO towards data

completion, we change the total number of workers from

100 to 300. We can see that our PRO outperforms the

other methods except the near-optimal OFF. Meanwhile, PRO

always selects more workers and achieves fewer error than the

secretary-based DYN, which shows that our prophet secretary

problem really improves the performance. Similarly, in most

cases, DYN and OMZ select fewer workers than RAN but

have better completion accuracy, which shows the necessity

of worker selection.

4) Spatio-temporal weights: In data completion and impor-

tance estimation parts, we exploit the spatio-temporal correla-

tions in sensing data to improve the performance of our pro-

posed methods. Thus, we conduct some evaluations on spatio-

temporal weights λs and λt. Note that the above evaluations

have already shown the effectiveness of these weights, we

are mainly concerned with the proportion between them. As

shown in Fig. 12 (a), we set λs=1−λt and obtain the standard-

ized error over five sensing tasks. Interestingly, we find that

the temporal weights play the more important roles in urban

sensing (Traffic/Park) while the spatial ones help more with

environmental monitoring (PM2.5/Temperature/Humidity).

5) Running time: Finally, we compare the running time of

our online framework with the offline ones, as shown in Fig.

12 (b). Actually, the offline methods cost ∼ 1− 2 minutes for



TABLE II: Statistics of five evaluation sensing tasks

Environmental Monitoring Urban Sensing
PM2.5 Temperature Humidity Traffic Parking

City Beijing (China) Lausanne (Switzerland) New South Wales (Australia) Birmingham (UK)

Sensing areas 36 areas each with 1k*1km2 57 areas each with 50*30m2 30 subway stations 73 car parks
Cycle & Duration 1 hour & 11 days 0.5 hour & 7 days 1 day & 1 year 0.5 hour & 77 days

Mean Std. 79.11± 81.21 6.04± 1.87◦C 84.52± 6.32% 19095.73± 26750.79 647.97± 657.23

(a) PM2.5

�

(b) Temperature (c) Humidity (d) Traffic (e) Parking

Fig. 9: Data completion under randomly selection with different sparsity ratios.

(a) PM2.5

�

(b) Temperature (c) Humidity (d) Traffic (e) Parking

Fig. 10: Importance estimation-guided data completion with different sparsity ratios.

(a) PM2.5



(b) Temperature (c) Humidity (d) Traffic (e) Parking

Fig. 11: Worker selection towards data completion with different numbers of workers.

TABLE III: Running time

ON STMC MC DMF KNN-S KNN-T GP
0.32 73.87 55.19 24.81 0.05 0.05 0.03

data completion, importance estimation, and worker selection,

while our online ones only need ∼ 0.2− 0.4 second. We also

illustrate the running time of the most time consuming part,

i.e., the data completion methods, in Table III. Expect the

above methods, we also add some fast ones as comparisons,

i.e., the classic K-Nearest Neighbors and Gaussian Process.

However, these fast methods cannot deal with the sparse data.

VIII. CONCLUSION

In this paper, we investigate the online Sparse Crowdsens-

ing, where we can recruit a few workers to perform a part of

sensing tasks and infer the rest. Since the workers will partici-

pate in real time, their sensing data are coming dynamically. To

deal with such online workers with dynamically coming data,

we propose the OS-MCS framework which consists of three

parts: matrix completion, importance estimation, and worker

selection. To make full use of the online data, we first propose

an online matrix completion algorithm with spatio-temporal

constraints. Based on that, we estimate the spatio-temporal

area importance by conducting a reinforcement learning-based

up-to-date model. Finally, we investigate the prophet secretary

problem to select suitable workers to actively sense important

areas for data completion in an online manner. Extensive

experiments on five typical sensing tasks with real-world data

sets have shown the effectiveness of our proposed methods

and framework for online Sparse Crowdsensing.
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